Intrinsic neuromodulation in the Tritonia swim CPG: the serotonergic dorsal swim interneurons act presynaptically to enhance transmitter release from interneuron C2.

نویسندگان

  • P S Katz
  • W N Frost
چکیده

Heterosynaptic enhancement of transmitter release is potentially very important for neuronal computation, yet, to our knowledge, no prior study has shown that stimulation of one neuron directly enhances release from an interneuron. Here, we demonstrate that in the marine mollusk Tritonia diomedea, the serotonergic dorsal swim interneurons (DSIs) heterosynaptically increase the amount of transmitter released from another interneuron, C2. Stimulation of a single DSI at physiological firing frequencies increases the size of synaptic potentials evoked by C2. This increase in synaptic efficacy is correlated with an increase in homosynaptic paired-pulse facilitation by C2. Thus, it is likely to be due to an enhancement of transmitter release from C2, rather than a postsynaptic action on the followers of C2. This is further supported by the fact that DSI stimulation enhances the strengths of all chemical synapses made by C2 within the swim network, regardless of their sign. Furthermore, DSI enhances the amplitude of C2 synaptic potentials recorded in neurons that DSI itself does not synapse with. Finally, DSI differentially modulates different synaptic inputs to the same postsynaptic target; while increasing C2-evoked EPSPs it simultaneously decreases the size of EPSPs evoked by other DSIs. The heterosynaptic facilitation of C2 synaptic potentials by DSI is not caused by a simple depolarization of C2, but may be a direct action on the transmitter release mechanism. This neuromodulatory effect, which is intrinsic to the circuitry of the central pattern generator for escape swimming in Tritonia, may be important for self-reconfiguration of the swim motor network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator.

For the mollusc Tritonia diomedea to generate its escape swim motor pattern, interneuron C2, a crucial member of the central pattern generator (CPG) for this rhythmic behavior, must fire repetitive bursts of action potentials. Yet, before swimming, repeated depolarizing current pulses injected into C2 at periods similar those in the swim motor program are incapable of mimicking the firing rate ...

متن کامل

A Comparative Analysis of the Neural Basis for Dorsal-Ventral Swimming in the Nudipleura

Despite having similar brains, related species can display divergent behaviors. Investigating the neural basis of such behavioral divergence can elucidate the neural mechanisms that allow behavioral change and identify neural mechanisms that influence the evolution of behavior. Fewer than three percent of Nudipleura (Mollusca, Opisthobranchia, Gastropoda) species have been documented to swim. H...

متن کامل

Transient enhancement of spike - evoked calcium signaling by a serotonergic interneuron . Running head – Serotonergic interneuron enhancement of calcium signaling

Enhancement of presynaptic Ca signals is widely recognized as a potential mechanism for heterosynaptic potentiation of neurotransmitter release. Here, we show that stimulation of a serotonergic interneuron increased spike-evoked Ca in a manner consistent with its neuromodulatory effect on synaptic transmission. In the gastropod mollusc, Tritonia diomedea, stimulation of a serotonergic dorsal sw...

متن کامل

Identified serotonergic neurons in the Tritonia swim CPG activate both ionotropic and metabotropic receptors.

Although G-protein-coupled (metabotropic) receptors are known to modulate the production of motor patterns, evidence from the escape swim central pattern generator (CPG) of the nudibranch mollusk, Tritonia diomedea, suggests that they might also participate in the generation of the motor pattern itself. The dorsal swim interneurons (DSIs), identified serotonergic neurons intrinsic to the Triton...

متن کامل

Potentiation phase of spike timing-dependent neuromodulation by a serotonergic interneuron involves an increase in the fraction of transmitter release.

In the mollusk, Tritonia diomedea, the serotonergic dorsal swim interneuron (DSI) produces spike timing-dependent neuromodulation (STDN) of the synaptic output of ventral swim interneuron B (VSI) resulting in a biphasic, bidirectional change of synaptic strength characterized by a rapid heterosynaptic potentiation followed by a more prolonged heterosynaptic depression. This study examined the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 15 9  شماره 

صفحات  -

تاریخ انتشار 1995